
OJ review 1
Huangjie Zheng

04/25/2018

Outline

• Assignment 1,4,5

• How to debug efficiently

Assignment review

Assignment1: Big Integer Class

• Description:

• Implement a big integer class with overloading some operators (+, -, *,
=).

• Remark:

• Classic operators (in C++) do not serve for created class
• Overloading operators are redefined according to our need. (creation,

modification, etc. are not allowed)

Assignment1: Big Integer Class

class BigInteger
{
private:

int data[500];
int length;

public:
BigInteger(){ length = 1; memset(data,0,sizeof(data)); }
BigInteger(const char*); //First thing: char -> BigInteger
BigInteger &operator=(const BigInteger &); //Second: define the result
BigInteger operator+(const BigInteger &) const; // Third: define operators
BigInteger operator-(const BigInteger &) const;
BigInteger operator*(const BigInteger &) const;
void show(); // Finally, present the result

};

Assignment1: Big Integer Class

• BigInteger(const char*);
• “char” to “BigInteger”

• Length <- strlen
• data[] <- char*

• Overloading “=”
• this <- input (length, data)

• Overloading “+,-,*”
• Past exercise

Some helpful links

• Why return a reference:
https://www.cnblogs.com/codingmengmeng/p/5871254.html

• How overloading works:
https://en.wikibooks.org/wiki/C%2B%2B_Programming/Operators/
Operator_Overloading

https://www.cnblogs.com/codingmengmeng/p/5871254.html

Assignment4: Huffman encoding

• Background:
• ASCII: 8bit/character

• Huffuman:

Assignment4: Huffman encoding

• Construct Huffman coding tree

• Traversal of the tree:
• Depth of the leave node (code length)
• Frequency
• Final length = σ code length x frequency

Assignment4: Huffman encoding

• Trick: Huffman propriety
• Optimized Weighted Path Length of Tree

• Alternative solution:
• Compute the weighted path of coding tree
• Recursively compute the weight of nodes
• Ex: min-Heap, pop and add every two tops, push back.

Assignment5: Binary Search Tree

• Node:
• Left < Right

• Inorder traversal:
• Ordered sequence

Assignment5: Binary Search Tree

• Common ancestor of two given nodes:

• Check given node “a”, “b”: a > b or a < b

Suppose a > b:
• Recursively move downward
• Check if current node “c” satisfy : a < c < b
• If c > b: move to the left child of c
• If c < a: move to the right child of c

How to debug

Actually…

• Debug is a very personal thing…

• Everyone has his/her own way

• Experience is precious

• Good coding habits

Helpful habits

• Use “function”

• Use “class”

• Write down some comments (optional)

Some debug methods

Debug: Compile error

• Easiest to deal with
• Read carefully the error information

• Ex:

Debug: Runtime error

• Typically: misusage of memory:

• Pointer
• Subscribe of the array is out of range

int * p=(int *)malloc(5 * sizeof(int));

*(p+10)=10;

Debug: locate the bug

• Breakpoint: check the running process

• If online judge:

• add some output mechanism
• delete(comment) the deployment of some function

Debug: empirical check

• Initialization of algorithm

• Logical order of:
• Loops (e.g. break/continue)
• Logic operation

• Is our algorithm strong enough to cover all cases?

• MOST IMPORTANTLY: PATIENCE

Thanks
https://jegzheng.github.io/teaching/2018-spring-teaching

